
Blind Exploitation of Stack Overflow Vulnerabilities

NGS NISR
N e xt G e n e ra tio n Se c u ri ty S o f tw a r e Ltd .

Blind Exploitation of Stack Overflow
Vulnerabilities

Notes on the possibilities within Microsoft Windows NT based
operating systems

Abstract

This paper presents a number of technical discussion points relating to the potential for
exploiting stack overflow vulnerabilities without having direct access to the application which is
to be exploited.

The points raised in this paper discuss the key issues which would need to be overcome in
order to do this, as well as presenting several ideas as to how this can be achieved from a
'blind' perspective.

Author

Peter Winter-Smith, NISR Research Analyst – email: peter[at]ngssoftware.com

Contributors

Chris Anley, Director – email: chris[at]ngssoftware.com

NGSSoftware Insight Security Research Page 1 of 8 http://www.ngssoftware.com

Blind Exploitation of Stack Overflow Vulnerabilities

Blind Exploitation of Stack Overflow Vulnerabilities.................................. 1
Section :1 Theory... 3
Section :2 Idea Progression.. 4

.2.1. Discussion Point One... 4

.2.2. Discussion Point Two... 4

.2.3. Discussion Point Three...5

.2.4. Discussion Point Four...6

.2.5. Thoughts on Shell Code... 7
Section :3 Conclusion.. 8

NGSSoftware Insight Security Research Page 2 of 8 http://www.ngssoftware.com

Blind Exploitation of Stack Overflow Vulnerabilities

Section :1 Theory
It is the common belief that it is a difficult, if not impossible, task to exploit a buffer overflow
vulnerability without access to a copy of the software in which the vulnerability has been
discovered. This is understandable, as the typical exploit writer will require at least two pieces
of basic information to exploit even the most simple of cases.

An exploit writer will normally require the following information:

• How many bytes are needed to overflow the buffer and overwrite a value which can
be used to gain direct control over the instruction pointer (saved return address,
function pointer, etc)?

• Which address may be used to successfully return to the buffer in question?

In theory, if these two pieces of information may be eliminated, replaced, or solved generically,
it would be possible to exploit some buffer overflow vulnerabilities 'blindly' - without a copy of
the flawed software at hand.

Throughout this paper, we will devise a mechanism which can successfully satisfy both of
these important points. The purposes being to develop a basic design framework for the blind
exploitation of buffer overflow vulnerabilities under Microsoft Windows NT based operating
systems.

NGSSoftware Insight Security Research Page 3 of 8 http://www.ngssoftware.com

Blind Exploitation of Stack Overflow Vulnerabilities

Section :2 Idea Progression
Discovering the length of the buffer at which it can be made to overflow is the most difficult
piece of information to obtain. If this length is guessed incorrectly we would almost certainly
write our return address outside of the correct position and immediately fail in our attempt to
gain control over the execution flow.

.2.1. Discussion Point One

When attempting to solve the problem of misplaced return addresses, it may be possible to fill
the buffer with multiple working return addresses - all of which will return to a certain position
within the buffer. This would require the buffer to contain shellcode preceded by executable
padding (nops or executable instructions with no important side-effect), and then to be
followed by return addresses - each of which would point to code to jump to the buffer at some
point within the executable padding. This may be constructed as follows:
[padding][shellcode][ret1][ret2]...[ret64]..

Each of the return addresses would point to an instruction block similar to:
lea eax, [esp-sizeof(shellcode)-n]
jmp eax

Where n is a variable length value which will ensure that the value used will land within the
padding. This would obviously increase as the number of return addresses laid on the stack
increases, to accommodate for the growing offset difference.

The main problem with this idea would be that a large number of return addresses would need
to be known to lie within the target process. This requires a relatively deep insight into the
memory space of the application, possibly to a greater degree than could be obtained without
a physical copy of the target software.

While it may be easy to argue that it is not overly difficult to discover and gain access to a
copy of a loaded module within the process space of the target application (this could be done
simply by limited host finger printing and obtaining a copy of the OS and its system files), there
is only limited assurance that the required instructions will be possible to obtain with any
degree of ease. There are of course an exponential number of combinations of instructions
which may be used to perform the one operation.

These addresses may also require changes as the buffer length is increased in an attempt to
overwrite a return address, although if the stack pointer is used a reference point for the
calculation of a buffer offset to jump to, there is a much reduced risk of this problem arising.

One last problem with this method is that a fairly large minimum buffer length is assumed –
the buffer would have to be larger than the length of the shellcode and the preceding
executable padding.

.2.2. Discussion Point Two

The traditional windows stack overflow exploit would attempt to execute the shellcode by
overwriting a saved return address with the address of a 'call esp' instruction and relying on
the fact that esp will lie directly after the return address - typically midway through the string
which has overflowed the buffer. This would look as follows:
[garbage padding][ret][padding][shellcode]

The saved return address would point to a 'call esp' instruction, and esp, immediately after
returning from the flawed function, would point to the executable padding, and would execute
this and the shellcode flawlessly.

NGSSoftware Insight Security Research Page 4 of 8 http://www.ngssoftware.com

Blind Exploitation of Stack Overflow Vulnerabilities

It would be noted that this design relies very much on the return address lying at an exact
position in the string, and if this was guessed incorrectly during an attempt to blindly exploit the
overflow, it would inevitably not work.

A possible step would be to attempt the reverse of the idea raised in discussion point one -
writing many return addresses all to jump a certain offset past the stack pointer - although this
method would still contain most of the aforementioned risks, and little extra benefit.

Another, slightly better idea, may be to treat the return address as part of the garbage
padding, and to fill the buffer with return addresses, all of which point to the 'call esp'
instruction, this way we would very reliably land somewhere within our string. The only
problem would be that we would almost certainly not land with esp pointing to our executable
padding (it would, instead, lie within our block of return addresses), and we would crash
before being able to execute our shellcode.

A failed attempt would look similar to the following:
[ret][ret][ret][ret]...[ret][ret][ret]...[ret][padding][shellcode]

Where any one of our return addresses could be the one to successfully overwrite the saved
return address. Let's say, for example, that the return address to overwrite the saved return
address was the fifth 'ret' in our example (highlighted in red), we would have to successfully
execute all of the following 'ret's and our padding as instructions before we could execute our
shellcode. This would require that our return addresses, placed in the buffer in little endian,
would have to also double up as executable instructions!

While this sounds like a rather tall order, it may not be quite as difficult or impossible as it
sounds. When examining a buffer overflow vulnerability in a particular product some days ago,
I discovered that within the module 'hnetcfg.dll', a Microsoft code library, at the address of
0x662eb23f lies the instruction 'call esp'!

Why is this exciting? Stick that address into little endian byte order (0x3f 0xb2 0x2e 0x66) and
we will discover that it can be executed as a simple and harmless byte sequence!
662EB285 3F AAS
662EB286 B2 2E MOV DL,2E
662EB288 66:3F AAS
662EB28A B2 2E MOV DL,2E
662EB28C 66:3F AAS
662EB28E B2 2E MOV DL,2E
662EB290 66:3F AAS
662EB292 B2 2E MOV DL,2E
662EB294 66:3F AAS
662EB296 B2 2E MOV DL,2E
662EB298 66:3F AAS
662EB29A B2 2E MOV DL,2E
662EB29C 66:3F AAS

Taking another look at the example of an attempt to overflow the buffer with blocks of 'call
esp' return addresses, it was clear our only problem was that landing in the middle of these
blocks of return addresses typically would damage the execution flow well before it could be
made to reach our shellcode. If the return addresses themselves double up as executable
instructions, the application should have no problem reaching and executing our shellcode!

.2.3. Discussion Point Three

In many real life situations, it is very possible for a pointer which is in use by the application to
be overwritten before the vulnerable function can return and arbitrary code execution can take
place. This can often be avoided when writing an exploit by supplying the address of some
constant, writeable memory address within the string overflowing the buffer, and allowing the
application to write/read from that pointer without crashing before returning.

While this is an extremely easy thing to do when you know the offset, from the start of the
buffer, of the pointer being overwritten, it is extremely difficult in terms of blind exploitation,
and is almost guaranteed to cause issues when it comes to successfully gaining control over
the instruction pointer.

NGSSoftware Insight Security Research Page 5 of 8 http://www.ngssoftware.com

Blind Exploitation of Stack Overflow Vulnerabilities

Many exploit writers these days will opt to overwrite a structured exception handler to gain
control over the code execution flow, and to cause an access violation by writing past the end
of the stack memory page - instantly giving over control of execution - and avoiding pointer
related failings.

This is interesting from a blind exploitation point of view as a means to avoid this certain type
of problem, however it re-introduces the problem of needing to know the exact length needed
to overwrite the exception handler structure, and the offset from this to our buffer and
shellcode.

If we take a look at the typical design of exploits which execute their shellcode by overwriting
structured exception handlers, we will find the following format fairly standard:
[padding][shellcode][fake-next-seh][seh-func-ptr][jump-back-code]

The padding is executable padding, designed to lie directly before the shellcode. The
shellcode lies behind a fake 'next' pointer to the following exception handler structure, this
pointer is set to be executable instructions to jump forward by several bytes over the function
pointer (which is the exception handler address) to the jump back code which will return to the
executable padding and execute the shellcode. The exception handler function pointer is set
to execute a code block containing 'pop, pop, ret', as after execution is passed to the
exception handler, at esp + 8 lies a pointer to the 'next' structure pointer.

Optimised, only 13 bytes would be needed to overwrite the exception handler structure and
return near to our shellcode:
[0x90 0x90 0xeb 0x04] // next-seh jump forward by 4 bytes
[0x?? 0x?? 0x?? 0x??] // points to pop, pop, ret block
[0xe9 0x?? 0x?? 0xff 0xff] // jmp -???? bytes to padding + shellcode

To successfully use this method for blind exploitation, it would require the attacker to overwrite
the stack with successive blocks of these structures and jump code, until one overwrites an
exception handler, and writes past the end of the stack to throw an exception to execute that
handler. It would be necessary to design the blocks so that the jump back offset is adjusted to
accommodate the offset difference with each new block which is added, but this will be trivial
and reliable.

Since the stack is DWORD aligned, the size of our blocks would need to be increased to 16
bytes, this can easily done simply by adding padding after each block - this would have no
side effect.

As it would stand, the attacker should have at least a one in four chance of gaining control
over the code execution flow using this method. This should be particularly reliable to execute
our code if the alignment condition is met since an exception should immediately occur -
before the environment has a chance to change - and shellcode execution should instantly
commence without a problem!

.2.4. Discussion Point Four

Some of the concepts in the third discussion point can easily be applied to the saved return
address overwrite case. It may be possible to simply send a fixed block of shellcode, the
length of which would have to be DWORD aligned, followed by blocks consisting of a return
address and jump back code. Each block would have to be between 8 and 12 bytes in length,
padding included, and would have a design similar to the following:
[ret][jump-back-code]

The return address would point to a static 'call esp' instruction in a known loaded module, and
the jump back code would perform either a relative short or far jump backwards into the buffer
containing the shellcode.

When used actively in an exploit attempt, several of these blocks would be appended onto the
string in succession, similar to the following:
[padding][shellcode][block][block][block]...[block][block]

NGSSoftware Insight Security Research Page 6 of 8 http://www.ngssoftware.com

Blind Exploitation of Stack Overflow Vulnerabilities

In the hope that one of these blocks would overwrite the saved return address and execute
the jump back code, landing in the executable padding preceding the shellcode.

A reliable way to use this method could be to make multiple requests, each one containing
one or more blocks than the previous request. This would have a good chance of not far
exceeding the stack frame of the flawed function and therefore having a slightly lower chance
of damaging the execution flow before a successful return can be made - which is the biggest
potential problem concerned with the second discussion point.

.2.5. Thoughts on Shell Code

Since it is not usually possible to determine how many bytes may be needed to cause any
potential buffer overflows before making the overflow attempt, it would be a wise precaution to
minimise the size of the shellcode and necessary padding before attempting exploitation.

Optimisation of size in this way can be achieved in several ways. The first of which could be
by minimising the size of the executable padding placed before the shellcode and maximising
the accuracy of the offsets used in the jump back code.

A second idea would to be to design shellcode which could act as a 'bootstrap' loader for a
larger and more complex shellcode from some remote network source. Normal shellcode
optimisation practices should be employed to achieve the minimum size possible.

If the target of the attack is to only attempt to detect whether our code is being executed, a
small and simple shellcode which may do the trick would to be to call Sleep() followed by a call
to ExitProcess(). The delay before the socket is closed may indicate the success of the
shellcode execution with minimal wasted space.

Being unable to know, to a great extent, the environment within which code execution is taking
place, it may be particularly difficult to enable the application to resume execution after the
shellcode has finished executing. Exiting the thread may, in some cases, be all that is needed
- however for more difficult cases it may also be possible to examine previous stack frames
with a view to returning a previous function call, allowing the application to handle the error
with its own error handling code and continue execution.

This would, of course, require that the stack had not been damaged beyond repair as would
usually be the case after an attempt to gain control over the execution flow by overwriting an
exception handler.

NGSSoftware Insight Security Research Page 7 of 8 http://www.ngssoftware.com

Blind Exploitation of Stack Overflow Vulnerabilities

Section :3 Conclusion
It may be both interesting and useful to consider writing fuzzers which will construct test
strings which may be executed in the event of a buffer overflow. This would allow a successful
compromise to potentially be made during the testing phase of a particular server or
application alone!

The discussion points raised in this paper may help to reduce the assumptions of many
designers and administrators of proprietary network server applications that they are made
more secure due to the fact that no-one else has their software or code on which to model an
attack.

About Next Generation Security Software (NGS)

NGS is the trusted supplier of specialist security software and hi-tech consulting services to
large enterprise environments and governments throughout the world. Voted “best in the
world” for vulnerability research and discovery in 2003, the company focuses its energies on
advanced security solutions to combat today’s threats. In this capacity NGS act as adviser on
vulnerability issues to the Communications-Electronics Security Group (CESG) the
government department responsible for computer security in the UK and the National
Infrastructure Security Co-ordination Centre (NISCC). NGS maintains the largest penetration
testing and security cleared CHECK team in EMEA. Founded in 2001, NGS is headquartered
in Sutton, Surrey, with research offices in Scotland, and works with clients on a truly
international level.

About NGS Insight Security Research (NISR)

The NGS Insight Security Research team are actively researching and helping to fix security
flaws in popular off-the-shelf products. As the world leaders in vulnerability discovery, NISR
release more security advisories than any other commercial security research group in the
world.

Copyright © December 2004, Next Generation Security Software Limited. All rights reserved worldwide. Other marks
and trade names are the property of their respective owners, as indicated. All marks are used in an editorial context
without intent of infringement.

NGSSoftware Insight Security Research Page 8 of 8 http://www.ngssoftware.com

